Simulation Coding Guidelines

Simulations in Context

TRIM3 includes detailed and inter-related representations of over a dozen different tax and benefit programs, including cash assistance programs, nutrition benefits, other in-kind benefits, government health insurance, payroll taxes, income taxes, and programs that affect wages or employment. The simulation code for each of the modules that have been developed function within the structure established by the TRIM3 “frame” or “engine,” with all input and output data residing in TRIM3 MySQL database tables.

Process Flow: Figure 1 shown below illustrates the major TRIM3 components and the way they interact. Users connect to the microsimulation model via an internet browser. The web interface handles all user requests. The interface connects with the database to allow a user to view existing program rules and simulated results, to download data, compare existing results, and create, edit and run new simulations. It connects to the microsimulation model to execute a simulation when requested by a user.

When a run setup is executed, the model’s engine queries the database for the setup rules, the simulated results that are required by the setup, and the input data to be used by the simulation(s).
 If micro-results have been requested, the microsimulation engine writes those results to the database as they are simulated. They can later be extracted by users, browsed via the interface, or used in other simulations.

The microsimulation engine calls each simulation that is included in a run setup in the order specified by a user. The engine reads all the required information from the database (the program rules, setup options, ACS or CPS
 input data, and simulated results) and passes the relevant information to each simulation that is run. The simulation modules pass simulated results back to the engine, and the engine writes tabular results to the database. The engine also writes micro-data results to the database if they have been requested.
[image: image1.png]

Simulation Structure

The functionally empty Shell module
 illustrates the basic structure of a TRIM3 simulation module, as well as the use of frame-provided classes. This structure allows a simulation module to perform the following functions:

· Read the module's rule values and make them available for use in processing.
· Access variables from the input file.
· Specify how the persons in a household are to be grouped to form "units".

· For each unit, perform the processing steps that are unique to that simulation—e.g., determine if the unit is eligible for a program, the benefits it is eligible for, whether it will participate in the program being modeled.

· Create summary tables which summarize the results of the simulation for the whole population and for specific subgroups.

· Create output variables for each unit and/or person containing the results of the simulation.
In order to perform these functions, a simulation module uses the following frame-supplied classes:

· CSSim

· CUnit

· CTable

· CResultType

· CResultSet

· CResultMonthlySet

As illustrated by Shell, the simulation-specific classes derived from each of these frame classes are usually named by combining some form of the module name with some form of the class name (i.e. CShellSim, CShellUnit, CShellTable, CShellType, CShellResultSet, and CShellResultMonthlySet). Furthermore, the class derived from the CSSim class almost always references additional classes which handle detailed simulation processing. These additional classes are also derived from specialized frame-supplied classes, or from the general-purpose class CInstSet.
Accessing Program Rules
The Initialize function of the CSSim class is somewhat of a misnomer, as its function is to read and store rule values. As shown by the Shell module, it also calls the Initialize functions of additional classes that need to read and store rule values. The Initialize functions are called once at the beginning of a simulation, before any households are processed. The rule values set by the Initialize functions remain set for the duration of the simulation, and should not be modified by the simulation code (i.e. they should be treated as “read only”, even though they can in fact be modified). The bulk of the coding modifications needed for accessing specific rules take place in the “List…” and “Move…” functions called by the Initialize function. For details, see Using Program Rules.
Unit Definitions
After initialization, the processing of households begins. Every frame-supplied class provides the user with a pointer (pHousehold) to an object which contains all the input variables for the household currently being processed. After all values for a household have been read in, the frame divides household members into one or more “units” that are uniquely defined for that simulation.
 The frame then passes these units, one at a time, to the CSSim class for processing. The work of placing people in units is handled by the CUnit class. The base version of this class has certain pre-defined unit definitions. If one of these definitions is appropriate, there is no need to create a simulation-specific version of the CUnit class. Otherwise, the simulation must implement its own definition. See Using the CUnit Class for details.
Simulation Processing

After a household has been broken into units, the “Simulate” function of the CSSim-based class is called for each unit. This function is the heart of the simulation module. It is recommended that the Simulate function start by performing certain preliminary tasks. See Simulation Prep for details.
After these “house-keeping” tasks are completed, the core part of the simulation starts. TRIM was initially designed to simulate tax and transfer programs. These programs were similar enough that a single set of general processing requirements could be applied to all simulation modules. These are described in the document “Steps in Simulating Tax and Transfer Programs”. The following base classes were made available by the frame to each module in order to carry-out these general requirements:

· CUnit

· CEligible

· CAssets

· CIncome

· CBenefit

· CParticipate

Initially, it was planned that these base classes would supply much of the functionality required by the modules, thus limiting the amount of simulation-specific additions that would need to be made to them. However, with the exception of the CUnit class, the particular needs of each module proved to be too varied for much standardization to be possible. Consequently, these base classes have been used largely for organizational purposes (i.e. as convenient places for holding the numerous simulation-specific functions that apply to these general areas). Furthermore, over time, TRIM modules have been called upon for more varied work, from data-imputation to data-analysis, for which the above approach is inappropriate.
Variable Initializations

It is not necessary to initialize any of the simulation results that are created by a simulation that are a part of results classes derived from CResultSet or CResultMonthlySet, as the frame performs those initializations at the beginning of the processing of each unit. Additionally, it should be noted that variable initializations apply only to the unit being processed. Any values assigned to household members outside of the unit being processed will not be preserved when the processing of a new unit in the same household is begun.
Simulated Outputs
The end result of the simulation code is to produce two kinds of output—result variables and summary tables. Summary tables are generated for every simulation run; however, microdata results are optional and are specified by users. Result variables contain person-level information and can be produced at any point in the simulation. Summary tables are updated after a unit has gone through the simulation processing and written after the last household and unit has been processed. Details about coding summary tables are in the Summary Tables document, and information about adding result variables is provided by Adding a result variable.
Coding Conventions and Standards

Coding requirements of the various modules are not easily standardized, thus each module contains a great deal of unique and complex code. Standards and conventions have been developed to attempt to achieve some degree of consistency that will facilitate understanding and that will promote efficiency when programmers move from one module to another. See the following documents for additional information.
TRIM3 Programming Conventions and Recommended Practices.doc
Preliminary Steps and Design Considerations
Looping through Persons
A Procedure for Detecting and Removing Superfluous Looping
� A run setup may consist of a single simulation or multiple simulations that are to be run in the sequence indicated in the run setup, with later simulations using the results of the simulations that precede them.

� ACS refers to the American Community Survey, and CPS refers to the Current Population Survey. Both are large national surveys conducted by the Census Bureau.

� The Shell module may be copied and used as the starting point for the development of a new TRIM3 simulation module.

� This is often accomplished by passing an argument to the TRIM3 frame function SelectUnits, though some modules incorporate more complex unit definitions by defining their own unit class. For a “hybrid” solution, see the ChildCare code. Initially, the unit is defined by a call to the frame function in the CChildCareUnit “GetFirstUnit” function using a ChildCare program rule argument. The unit definition is then modified by a call to the CChildCareUnit “AdjustUnits” function.

